≡ Menu

kernel code

You can easily mount remote server file system or your own home directory using special sshfs and fuse tools.

FUSE - Filesystem in Userspace

FUSE is a Linux kernel module also available for FreeBSD, OpenSolaris and Mac OS X that allows non-privileged users to create their own file systems without the need to write any kernel code. This is achieved by running the file system code in user space, while the FUSE module only provides a "bridge" to the actual kernel interfaces. FUSE was officially merged into the mainstream Linux kernel tree in kernel version 2.6.14.

You need to use SSHFS to access to a remote filesystem through SSH or even you can use Gmail account to store files.

Following instructions are tested on CentOS, Fedora Core and RHEL 4/5 only. But instructions should work with any other Linux distro without a problem.

Step # 1: Download and Install FUSE

Visit fuse home page and download latest source code tar ball. Use wget command to download fuse package:
# wget http://superb-west.dl.sourceforge.net/sourceforge/fuse/fuse-2.6.5.tar.gz
Untar source code:
# tar -zxvf fuse-2.6.5.tar.gz
Compile and Install fuse:
# cd fuse-2.6.5
# ./configure
# make
# make install

Step # 2: Configure Fuse shared libraries loading

You need to configure dynamic linker run time bindings using ldconfig command so that sshfs command can load shared libraries such as libfuse.so.2:
# vi /etc/ld.so.conf.d/fuse.conf
Append following path:
/usr/local/lib
Run ldconfig:
# ldconfig

Step # 3: Install sshfs

Now fuse is loaded and ready to use. Now you need sshfs to access and mount file system using ssh. Visit sshfs home page and download latest source code tar ball. Use wget command to download fuse package:
# wget http://easynews.dl.sourceforge.net/sourceforge/fuse/sshfs-fuse-1.7.tar.gz
Untar source code:
# tar -zxvf sshfs-fuse-1.7.tar.gz
Compile and Install fuse:
# cd sshfs-fuse-1.7
# ./configure
# make
# make install

Mounting your remote filesystem

Now you have working setup, all you need to do is mount a filesystem under Linux. First create a mount point:
# mkdir /mnt/remote
Now mount a remote server filesystem using sshfs command:
# sshfs vivek@rock.nixcraft.in: /mnt/remote
Where,

  • sshfs : SSHFS is a command name
  • vivek@rock.nixcraft.in: - vivek is ssh username and rock.nixcraft.in is my remote ssh server.
  • /mnt/remote : a local mount point

When promoted supply vivek (ssh user) password. Make sure you replace username and hostname as per your requirements.

Now you can access your filesystem securely using Internet or your LAN/WAN:
# cd /mnt/remote
# ls
# cp -a /ftpdata . &

To unmount file system just type:
# fusermount -u /mnt/remote
or
# umount /mnt/remote

Further readings:

How to: Compile Linux kernel 2.6

Compiling custom kernel has its own advantages and disadvantages. However, new Linux user / admin find it difficult to compile Linux kernel. Compiling kernel needs to understand few things and then just type couple of commands. This step by step howto covers compiling Linux kernel version 2.6.xx under Debian GNU Linux. However, instructions remains the same for any other distribution except for apt-get command.

Step # 1 Get Latest Linux kernel code

Visit http://kernel.org/ and download the latest source code. File name would be linux-x.y.z.tar.bz2, where x.y.z is actual version number. For example file inux-2.6.25.tar.bz2 represents 2.6.25 kernel version. Use wget command to download kernel source code:
$ cd /tmp
$ wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2

Note: Replace x.y.z with actual version number.

Step # 2 Extract tar (.tar.bz3) file

Type the following command:
# tar -xjvf linux-2.6.25.tar.bz2 -C /usr/src
# cd /usr/src

Step # 3 Configure kernel

Before you configure kernel make sure you have development tools (gcc compilers and related tools) are installed on your system. If gcc compiler and tools are not installed then use apt-get command under Debian Linux to install development tools.
# apt-get install gcc

Now you can start kernel configuration by typing any one of the command:

  • $ make menuconfig - Text based color menus, radiolists & dialogs. This option also useful on remote server if you wanna compile kernel remotely.
  • $ make xconfig - X windows (Qt) based configuration tool, works best under KDE desktop
  • $ make gconfig - X windows (Gtk) based configuration tool, works best under Gnome Dekstop.

For example make menuconfig command launches following screen:
$ make menuconfig

You have to select different options as per your need. Each configuration option has HELP button associated with it so select help button to get help.

Step # 4 Compile kernel

Start compiling to create a compressed kernel image, enter:
$ make
Start compiling to kernel modules:
$ make modules

Install kernel modules (become a root user, use su command):
$ su -
# make modules_install

Step # 5 Install kernel

So far we have compiled kernel and installed kernel modules. It is time to install kernel itself.
# make install

It will install three files into /boot directory as well as modification to your kernel grub configuration file:

  • System.map-2.6.25
  • config-2.6.25
  • vmlinuz-2.6.25

Step # 6: Create an initrd image

Type the following command at a shell prompt:
# cd /boot
# mkinitrd -o initrd.img-2.6.25 2.6.25

initrd images contains device driver which needed to load rest of the operating system later on. Not all computer requires initrd, but it is safe to create one.

Step # 7 Modify Grub configuration file - /boot/grub/menu.lst

Open file using vi:
# vi /boot/grub/menu.lst

title           Debian GNU/Linux, kernel 2.6.25 Default
root            (hd0,0)
kernel          /boot/vmlinuz root=/dev/hdb1 ro
initrd          /boot/initrd.img-2.6.25
savedefault
boot

Remember to setup correct root=/dev/hdXX device. Save and close the file. If you think editing and writing all lines by hand is too much for you, try out update-grub command to update the lines for each kernel in /boot/grub/menu.lst file. Just type the command:
# update-grub
Neat. Huh?

Step # 8 : Reboot computer and boot into your new kernel

Just issue reboot command:
# reboot
For more information see:

  • Our Exploring Linux kernel article and Compiling Linux Kernel module only.
  • Official README file has more information on kernel and software requirement to compile it. This file is kernel source directory tree.
  • Documentation/ directory has interesting kernel documentation for you in kernel source tree.