Visual Representations Of Linux File Systems

Posted on in Categories File system, Howto, kernel, Linux last updated June 16, 2009

This is an interesting visualization techniques for software analysis. From the article:

Despite being a very important part of any operating system, file systems tend to get little attention. Linux has three editions for Linux Device Drivers, another three for Understanding the Linux Kernel and two for Linux Kernel Development. The first is a detail analysis of one particular Linux Kernel tree and the second is a shorter one done over a large number of file systems from Linux Kernel 2.6.0 to 2.6.29. After that there is a small section that shows some aspects of the BSD family. After conclusions there is an appendix consisting of three things: the first one explains how the file systems for Linux were compiled, the second one shows timelines for the releases of Linux Kernel, FreeBSD, NetBSD and OpenBSD; the last is a detailed map of the external symbols of the kernel modules analyzed in the second section.

A Visual Expedition Inside the Linux File Systems

Linux x86_64: Detecting Hardware Errors

Posted on in Categories CentOS, Debian Linux, fedora linux, Gentoo Linux, Hardware, Howto, kernel, Linux, Linux distribution, Networking, package management, RedHat/Fedora Linux, Shell scripting, Sys admin, Tips, Troubleshooting, Ubuntu Linux last updated June 2, 2009

The Blue Screen of Death (BSoD) is used for the error screen displayed by Microsoft Windows, after encountering a critical system. Linux / UNIX like operating system may get a kernel panic. It is just like BSoD. The BSoD and a kernel panic generated using a Machine Check Exception (MCE). MCE is nothing but feature of AMD / Intel 64 bit systems which is used to detect an unrecoverable hardware problem.

Program such mcelog decodes machine check events (hardware errors) on x86-64 machines running a 64-bit Linux kernel. It should be run regularly as a cron job on any x86-64 Linux system. This is useful for predicting server hardware failure before actual server crash.

XEN Virtualization Set The MTU For xenbr0 Interface

Posted on in Categories CentOS, Debian Linux, fedora linux, Gentoo Linux, High performance computing, kernel, Linux, Linux Virtualization, Networking, RedHat/Fedora Linux, xen last updated December 31, 2008

I’ve already written about setting the MTU (Maximum Transmission Unit) under Linux including Jumbo frames (FreeBSD specific MTU information is here).

With this quick tip you can increase MTU size to get a better networking performance.

Download of the day: Linux Kernel 2.6.28

Posted on in Categories Download of the day, kernel, Linux last updated December 27, 2008

Linux kernel version 2.6.28 has been released and available for download. The new version includes following stable and new features:

a] ext4 file system – The ext4 filesystem can support volumes with sizes up to 1 exbibyte and files with sizes up to 16 TiB. ext4 removes ext3 64-bit storage limits and adds other performance improvements.

b] Graphics Execution Manager (GEM) – It is a a modern memory manager specialized for use in device drivers for graphics chipsets. It manages graphics memory, controls the execution context and manages the Non-Uniform Memory Access (NUMA) environment on modern graphics chipsets. The “xf86-video-intel” device driver will feature GEM integration.

c] Other features – Stable USB drivers, KVM, bug fixes and other stuff.

=> Download Linux kernel 2.6.28 here. You may also find our kernel compile tutorial useful.

Security Update: Debian Linux Kernel Local / Remote Vulnerabilities

Posted on in Categories Debian Linux, kernel, Linux distribution, Security Alert last updated December 4, 2008

Debian project today released a pair of security updates to plug at least ten security holes in its core called Linux kernel. Several vulnerabilities have been discovered in the Linux kernel that may lead to a denial of service or privilege escalation. This update has been rated as having important security impact.

Linux: Boot a 2TB+ partition or Larger Array Using Grub

Posted on in Categories CentOS, data center, fedora linux, File system, Gentoo Linux, Hardware, High performance computing, Howto, kernel, Linux, Linux Scalability, Linux Virtualization, RedHat/Fedora Linux, Storage, Tips, vmware, xen last updated December 4, 2008

I’ve already written about creating a partition size larger than 2TB under Linux using GNU parted command with GPT. In this tutorial, I will provide instructions for booting to a flat 2TB or larger RAID array under Linux using the GRUB boot loader.

Linux: Should You Use Twice the Amount of Ram as Swap Space?

Posted on in Categories data center, Debian Linux, fedora linux, File system, FreeBSD, Gentoo Linux, kernel, Linux, Linux desktop, Linux laptop, OpenBSD, RedHat/Fedora Linux, Solaris, Storage, Suse Linux, Tuning, Ubuntu Linux, UNIX last updated November 19, 2008

Linux and other Unix-like operating systems use the term “swap” to describe both the act of moving memory pages between RAM and disk, and the region of a disk the pages are stored on. It is common to use a whole partition of a hard disk for swapping. However, with the 2.6 Linux kernel, swap files are just as fast as swap partitions. Now, many admins (both Windows and Linux/UNIX) follow an old rule of thumb that your swap partition should be twice the size of your main system RAM. Let us say I’ve 32GB RAM, should I set swap space to 64 GB? Is 64 GB of swap space really required? How big should your Linux / UNIX swap space be?

How To Reduce Linux Computer Power Consumption

Posted on in Categories GNU/Open source, Green Computing, Hardware, kernel, Linux last updated November 16, 2008

The Advanced Configuration and Power Interface (ACPI) specification is an open standard operating system-centic device configuration and power management. You can easily reduce your PC’s power consumption through smart activity monitors.

With the tools and code presented, you can reduce your power consumption through a series of rules regarding application usage. After tuning your kernel, hdparm, ACPI, and CPU settings, add these application monitors to more effectively enter your low-power states.