Linux HugeTLBfs: Improve MySQL Database Application Performance

Posted on in Categories CentOS, Hardware, High performance computing, Howto, MySQL, RedHat/Fedora Linux last updated May 20, 2009

Applications that perform a lot of memory accesses (several GBs) may obtain performance improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses. HugeTLBfs is memory management feature offered in Linux kernel, which is valuable for applications that use a large virtual address space. It is especially useful for database applications such as MySQL, Oracle and others. Other server software(s) that uses the prefork or similar (e.g. Apache web server) model will also benefit.

The CPU’s Translation Lookaside Buffer (TLB) is a small cache used for storing virtual-to-physical mapping information. By using the TLB, a translation can be performed without referencing the in-memory page table entry that maps the virtual address. However, to keep translations as fast as possible, the TLB is usually small. It is not uncommon for large memory applications to exceed the mapping capacity of the TLB. Users can use the huge page support in Linux kernel by either using the mmap system call or standard SYSv shared memory system calls (shmget, shmat).

Linux Memory Management – Understanding a Program in Memory

Posted on in Categories Howto, Linux last updated January 27, 2009

Excellent article! It explains how programs are laid out in memory.

From the blog post:

Memory management is the heart of operating systems; it is crucial for both programming and system administration. In the next few posts I’ll cover memory with an eye towards practical aspects, but without shying away from internals. While the concepts are generic, examples are mostly from Linux and Windows on 32-bit x86. This first post describes how programs are laid out in memory. Each process in a multi-tasking OS runs in its own memory sandbox. This sandbox is the virtual address space, which in 32-bit mode is always a 4GB block of memory addresses.

=> Anatomy of a Program in Memory